Ezerciseé 1 6.1

Graphs of Vector Equations
Match the vector equations in Exercises 1-8 with the graphs (a)-(h)
given here. .
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16.1 Line Integrals 957

the wall is the curve lying on the surface z = f(x,y). (We do not display the surface
formed by the graph of f in the figure, only the curve on it that is cut out by the cylinder.)

From the definition

/fds = Hm > fou, ) Asp,
c n00 k=1

where As,— 0 as n—> 00, we see that the line integral f cf ds is the area of the wall

shown in the figure.
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. r(®) = (2cos Hi + (Zsin Dk,

0=r=1
—-1=r=1

0==tr=2mw

r@®) = ti + (1 — 0j,
r() =i+j+tk,
r(t) = (2cos Ni + (2sin 1)j,

=t —-1=r=1
r=ti+e+k 0=r=2
rh=tj+2—-20k, 0=r=1
LD =@ - D+ 2k, —-1=r=1

0=tr=mw

Evaluating Line Integrals over Space Curves

1 9.

10.

11,

12,

13.

14.

15.

Evaluate f cx +y)ds where C is the straight-line segment
x=ty=(1—10,z=0,from(0,1,0)t0(1,0,0).

Evaluate f cx—y+z— 2)dswhere C is the straight-line seg-
mentx=¢fy=(1—1,z=1 from (0,1, 1)t (,0,1).
Evaluate f oy +y + 2)ds along the curve x() = 2d +
g+ -2k, 0=r=1

Evaluate f cVx* + y*ds along the curve r(f) = (4 cos Hi +
(4sinpj + 3tk, 27 =t = 2.

Find the line integral of f(x,y,2) = x + y + z over the straight-
line segment from (1, 2, 3) to (0, —1, 1).

Find the line integral of f(x,y,z) = V3/(x2 + y? + 22) over
thecurver() = i + ¢ + tk,1 =t =00,

Integrate f(x,y,2) = x + Vy — 2% over the path from (0, 0, 0)
to (1, 1, 1) (see accompanying figure) given by

C: r@=t+7 0=r=1
Cy r(h=i+j+tk, 0=t=1
Z
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The paths of integration for Exercises 15 and 16.
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16. Integrate f(x,y,z) = x + \/y_ — Z2 over the path fron’l‘ (0, 0, 0)
to (1, 1, 1) (see accompanying figure) given by
C: rh=1tk, 0=tr=1
C r@=t+k 0=r=<1
G or=tH+j+k 0=r=1
17. Integrate f(x,y,2) = (x +y + 2)/(x2 + 32 + z2) over the path
) =ti++tk0<a<rt=p
18. Integrate f(x,y,z) = —Vx2 + 72 over the circle

r(®) = (acos Hj + (asin Kk, 0=r1=2m

Line Integrals over Plane Curves
19. Evaluate f cX ds, where Cis

a. the straight-line segment x = 1,y = t/2, from (0, 0) to (4, 2).
b. the parabolic curve x =,y = ¢, from (0, 0) to (2, 4).

20. Evaluate f c Vx + 2y ds, where Cis
a. the straight-line segment x = 1, ¥ = 4t, from (0, 0) to (1, 4).
b. C, U G; G is the line segment from (0, 0) to (1, 0) and G, is

the line segment from (1, 0) to (1, 2).

21. Find the line integral of f(x, y) = ye© along the curve
r(H) = 44— 3tj, -1 =t = 2, :

22, Find the line integral of f(x, ¥) =x —y+ 3 along the curve
r{t) = (cos Hi + (sinp)j, 0 = r < 2.

23. Evaluate /
c

l=¢=2 _
24. Find the line integral of f(x,y) = \/i/x along the curve
) =ri+t,1/2=r=1.
25, Evaluate f c (x + \/;) ds where C is given in the accompanying
figure.

2
{— ds, where Cis the curve x = 1%,y = £, for
¥ ;

©,0) g
26. Evaluate / —5+—IZ+—1 ds where C is given in the accompany-
c* Ty
ing figure.
Y
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In Exercises 27-30, integrate f over the given curve.

27, fey) =2y, C y=2x2/2, 0<x=2

28 fooy) = 4 y)/VI+2, Gy =22 from (1,179,
©,0)

29. fo, ) =x+y C x*+y*=4 in the first quadrant frop,
(2,0)t0(0,2)

30. f,y)=x*—y, C: x*+ y* =4 in the first quadrant frop,
©,2)t0 (V2, V2)

31. Find the area of one side of the “winding wall” standing orthogo-

nally on the curve y = x2% 0 =< x = 2, and beneath the curve o
the surface f(x,y) = x + VY.

32. Find the area of one side of the “wall” standing orthogonally op

the curve 2x + 3y = 6,0 =< x < 6, and beneath the curve op
the surface f(x,y) = 4 + 3x + 2y.

. Masses and Moments

33. Mass of a wire Find the mass of a wire that lies along the curve
r(®) = (2 — 1)j+ 2k, 0 =<t < 1, if the density is & = (3/2)r.

34. Center of mass of a curved wire A wire of density
8(x, y,2) = 15Vy + 2 lies along the curve r(f) = (2 — nj+
2rk,—1 = ¢ =< 1. Find its center of mass. Then sketch the curve
and center of mass together. i

35, Mass of wire with variable density Find the mass of a thin
wire lying along the curve r(f) = V2ri + V21§ + (4 —~ )k,
0 =t = 1, if the density is (a) 5 = 3rand (b) 6 = 1.

36. Center of mass of wire with variable density Find the center
of mass of a thin wire lying along the curve () =+ 2 +
(2/3)7k,0 =< t < 2, if the density is 6 = 3V/5 + 1.

37. Moment of inertia of wire hoop A circular wire hoop of con-
stant density 6 lies along the circle x? + y* = 42 in the xy-plane.
Find the hoop’s moment of inertia about the z-axis.

38. Inertia of a slender rod A slender rod of constant density lies
along the line segment r() = tj + (2 — 20k, 0 < ¢ =< 1, in the

. ¥z-plane. Find the moments of inertia of the rod about the three
coordinate axes.

39. Two springs of constant density A spring of constant density
0 lies along the helix

r(t) = (cos Hi + (sin H)j + 7k, 0=r=< 2.

a. Find I,

b. Suppose that you have another spring of constant density &
that is twice as long as the spring in part (a) and lies along the
helix for 0 = ¢ =< 47, Do you expect I, for the longer spring
to be the same as that for the shorter one, or should it be dif-

. ferent? Check your prediction by calculating I, for the longer
spring.
40. Wire of constant density A wire of constant density 8 = !
lies along the curve

r(H) = (tcos Hi + (tsino)j + (2\/5/3)13/2& 0=t=1L

Find 7 and .
41. The arch in Example 4 Find I, for the arch in Example 4.
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16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 959

42. Center of mass and moments of inertia for wire with variable 43. fx,y,2) = V1 + 3022 + 10y; r(t) = ti + £ + 3%k,

density Find the center of mass and the moments of inertia 0=<t=<2
about the coordinate z:);e_s Qf a thin wire lying along the curve 44, G y.2) = m; . =i+ % 2+ Vik
2 ~
r(t)=ti+232t3/2j+~t2~k, 0=t=2 0=t=2
45. f(x,y,2) = xVy — 322 r(® = (cos 20i + (sin 20)j + 57k,
if the density is § = 1/(¢ + 1). 0=t=2m
‘ 1/4
COMPUTER EXPLORATIONS 46. f(x,y,2) = (1 + %zm) . 1) = (cos 20i + (sin2)j +

In Exercises 43-46, use a CAS to perform the following steps to

_ evaluate the line integrals.

' a. Find ds = |v(9)| dt for the path x(z) = gOi + h(®)j + k(Dk.

b. Express the integrand f(g(?), h(2), k()| v()] as a function of
the parameter .

¢. Evaluate f cfds using Equation (2) in the text.

Ak, 0=t =2m

16.2 Vector Fields and Line Integrais: Work, Circulation, and Flux

Gravitational and electric forces have both a direction and a magnitude. They are repre-
sented by a vector at each point in their domain, producing a vector field. In this section
we show how to compute the work done in moving an object through such a field by using
a line integral involving the vector field. We also discuss velocity fields, such as the vector
field representing the velocity of a flowing fluid in its domain. A line integral can be used
to find the rate at which the fluid flows along or across a curve within the domain.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid, such as air or
water. The fluid is made up of a large number of particles, and at any instant of time, a
particle has a velocity v. At different points of the region at a given (same) time, these
velocities can vary. We can think of a velocity vector being attached to each point of the
fluid representing the velocity of a particle at that point: Such a fluid flow is an example of
a vector field. Figure 16.6 shows a velocity vector field obtained from air flowing around
an airfoil in a wind tunnel. Figure 16.7 shows a vector field of velocity vectors along the
streamlines of water moving through a contracting channel. Vector fields are also associ-
ated with forces such as gravitational attraction (Figure 16.8), and with magnetic fields,
electric fields, and there are also purely mathematical fields.

Generally, a vector field is a function that assigns a vector to each point in its domain.
A vector field on a three-dimensional domain in space might have a formula like

F(x,y,2) = M(x,y, i + N(x,y,2)j + P, y, 2K

The field is continuous if the component functions M, N, and P are continuous; it is dif-
ferentiable if each of the component functions is differentiable. The formula for a field of
two-dimensional vectors could look like

¥, 3) = Mz, )i + N, y)i.

We encountered another type of vector field in Chapter 13. The tangent vectors T and
normal vectors N for a curve in space both form vector fields along the curve. Along a
curve r(7) they might have a component formula similar to the velocity field expression

FIGURE 16.7 Streamlines in a V(D = f@Oi + g@F + kDK

contracting channel. The water speeds up If we attach the gradient vector V£ of a scalar function f(x, y, 2) to each point of a
as the channel narrows and the velocity’ level surface of the function, we obtain a three-dimensional field on the surface. If we
attach the velocity vector to each point of a flowing fluid, we have a three-dimensional

FIGURE 16.6 Velocity vectors of a
flow around an airfoil in a wind tunnel.

vectors increase in length.




1 fn 9,0 =@+ Y2+
2 fxy,2) = InVa? +y* + 2
3, gx,,2) = e — In(:® + ¥?)

4. glx,y,2) = xy + yz + xz .

5, Give aformula F = M(x, y)i + N(x, y)j for the vector field in the
plane that has the property that F points toward the origin with

magnitude inversely proportional to the square of the distance
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give aformula F = M(x, y)i + Ni(x, y)j for the vector field in the
plane that has the properties that F = 0 at (0, 0) and that at any
other point (a, b), F is tangent to the circle x* + yri= a*+ b
and points in the clockwise direction with magnitude ’F[ =

Va? + b

Line Integrals of Vector Fields
In Exercises 7—12, find the line integrals of F from (0, 0, 0) to (1, 1, 1)
 over each of the following paths in the accompanying figure.

a. The straight-line path Cp: x() = ti + j + 1k, 0=7r=1
b. Thecurvedpath Cy: x(®) = i + 2 + 'k, 0=t=1

¢. The path C; U C, consisting of the line segment from (0, 0, 0)
to (1, 1, 0) followed by the segment from (1, 1, 0) to 1, LD

7. F = 3yi + 2xj + 4zk 8. F=[1/(x>+1)]j
9. F=Vz—2xj+ Vyk 10 F=xyi+yzj‘+xzk'
1L F = (2 - 30i+ 32 + k
R.F=@F+i+E+xj+&+yk

|
:
.

(/1, 1,0)

Line Integrals with Respect to x, y, and z
In Exercises 13-16, find the line integrals along the given path C.

13, /(x*y)dx,whereC:x=t,y=2t+ I,for0=t=3
c

' 14./%dy,whereC:x=t,y=t2,f0rlStSZ
c

P18, / (32 + y?) dy, where C is given in the accompanying ﬁgﬁre
c
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3.3

= x
©,0) 3.0

16. / Vx + y dx, where C is given in the accompanying figure
c

C
(0, 3)5 (1,3)

©,0

17. Along the curve x(f) =t —j + 2k, 0 =< t < 1, evaluate each
of the following integrals.

a.f(x+y—z)cix b./(x+}”2)d}'
. C : C

c./(x+y—z)dz
C

18. Alongthecurver(s) = (cos i + (sin#)j — (cos Dk, 0 =t =,
evaluate each of the following integrals.
c. / xyz dz
c

a. /xzdx b. /xzdy
c /C

Worlk
In Exercises 19-22, find the work done by F over the curve in the

direction of increasing .
19. F = xyi + yj — yzk
)=+ 2tk 0=sr=<1

20. F=2yi +3xj+(x+yk

r(® = (cos i + (sinj + (¢/6)k, 0=71=2w
21. F=zi +xj +yk '

@) = (sinHi + (cosj +tk, 0=t= 21T
22. F =6z + y4 + 12k

r(®) = (sinDi + (cos )j +-@/6k, 0=¢=27

Line Integrals in the Plane

23. Evaluate f cxydx + (x+y) dy along the curve y = x? from
-1, Dto(2,4).

24. Evaluate f o —ydx+ (x + y) dy counterclockwise around
the triangle with vertices (0, 0), (1, 0), and (0, 1).

25. Evaluate . f cFrTds for the vector field F = x%i — yj along
the curve x = y* from (4, 2) to (1,—1).

26. Evaluate f cFdr for the vector field F = yi — xj counter-
clockwise along the unit circle x2 + y* = 1 from (, 0) to (0, 1).
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Vark, Circulation, and Flux in the Plane
7. Work Find the work done by the force ¥ = xyi + (y — x)j
over the straight line from (1, 1) to (2, 3).

'8, Work Find the work done by the gradient of f(x,y) = (x + y)?
counterclockwise around the circle x2 + y* = 4 from (2, 0) to
itself.

9. Circulation and flux Find the circulation and flux of the fields

F, = xi + yj and F, = —yi + xj

around and across each of the following curves.
a. Thecircle r(f) = (cos )i + (sinp)j, 0 =1 =2mr
b. The ellipse x(z) = (cos )i + (4sinn)j, 0 =1t=27
10. Flux across a circle Find the flux of the fields V
F;, = 2xi — 3yj and F, = 2xi + (x — y)i
across the circle
() = (acos )i + (asin Bj,
n Exercises 31-34, find the circulation and flux of the field F around
nd across the closed semicircular path that consists of the semicircu-
ar arch 1;(f) = (acos Hi + (asinnj, 0 =t = 7, followed by the
ine segment 1,(f) = t,—a =t =a.
1. F =xi+yj 32. F =x% + 3%
13, F = —yi + xj 34. T =—y% + x%
I5. Flow integrals Find the flow of the velocity field F =
(x + y)i — (x2 + y?)j along each of the following paths from
(1, 0) to (—1, 0) in the xy-plane.
a. The upper half of the circle x* + y? = 1
b. The line segment from (1, 0) to (—1, 0)
¢. Theline segmcnt from (1, 0) to (0, —1) followed by the line
segment from (0, —1) to (—1, 0)
16. Flux across a triangle Find the flux of the field F in Exercise
35 outward across the triangle with vertices (1, 0), (0, 1), (—1, 0).

¥7. Find the flow of the velocity field F = y* -+ 2xyj along each of
the following paths from (0, 0) to (2, 4). ‘

0=t=2m.

a. y b. y
2,4
1
yl= 2x
|
|
(0, 0) 2 * 0,0
c. U.se any path from (0, 0) to (2, 4) different from parts (a)

and (b).
38. Find the circulation of the field F = yi + (x + 2y)j around each
of the following closed paths.

a. y
-1 (1,1)

(-1, -1 €, -1

c. Use any closed path different from parts (a) and (b).

Vector Fields in the Plane
39. Spin field Draw the spin field
Y . X
- i+ j
Vi + 32 Va2 + yZJ
(see Figure 16.12) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle
24y =4,
40. Radial field Draw the radial field
F = xi + yj

F=

(see Figure 16.11) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle
®+y =1
41. A field of tangent vectors
a. Find a field G = P(x, )i + Q(x, )] in the xy-plane with the
property that at any point (a, b) # (0, 0), G is a vector of
magnitude Va? + b tangent to the circle x* + y? =
a* + b? and pointing in the counterclockwise direction. (The
field is undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.127

42. A field of tangent vectors

a, Find afield G = P(x, »)i + O(x, y)j in the xy-plane with the
property that at any point (a, b) # (0, 0), G is a unit vector
tangent to the circle x> + y? = a* + b? and pointing in the
clockwise direction.

b. How is G related to the spin field Fin Figure 16.12?

43. Unit vectors pointing toward the origin Find a field F =
M(x, y)i + N(x, y)j in the xy-plane with the property that at each
point (x,y) # (0, 0), F is a unit vector pointing toward the ori-
gin. (The field is undefined at (0, 0).)

44. Two “central” fields Find a field F = M(x, y)i + N(x, y)j in
the xy-plane with the property that at each point (x, y) # (0,0), F
points toward the origin and |F| is (a) the distance from (x, y) ©0
the origin, (b) inversely proportional to the distance from (x, ) ©
the origin. (The field is undefined at (0, 0).)

45, Work and area Suppose that F(?) is differentiable and positive
fora =t =b LetChethepathr(t) = #i + f(9), a = r=0b,
and F = yi. Is there any relation between the value of the work
integral

/F°dr
c

and the area of the region bounded by the r-axis, the graph of f
and the lines = a and ¢ = b? Give reasons for your answer-

46, Work done by a radial force with constant magﬂi}tu‘ie
particle moves along the smooth curve y = f(x) from (a, f(

a)) to
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(b, f(b)). The force moving the particle has constant magnitude k
and always points away from the origin. Show that the work done
by the force is

/ F-Tds = k[ (5% + FON)Y2 — (& + (F@)?)2].
C

Flow Integrals in Space

In Exercises 47-50, F is the velocity field of a fluid flowing through a
region in space. Find the flow along the given curve in the direction of
increasing f.

47, ¥ = —4xyi + 8yj + 2k

) =ti+2j+k 0=:=2
48. F = x4 + yzj + ¥’k
) =3tj+ 4k, O0=r=1

49, F = (x — 2i + xk

r() = (cos Hi + (sin DK,
50. F=—yi +xj + 2k

() = (2cost)i + @sinf)j + 2k, . 0=t =27
51, Circulation Find the circulation of F = 2xi + 2zj + ka

around the closed path consisting of the following three curves
traversed in the direction of increasing f.

0=t=a

Ci r(t) = (cosHi + (sinp)j +tk, 0=t =m/2
C: v =j+@/2)(1 -k, 0=tr=1
Cq: r@®=t+(0—-0vj, 0=:r=1

Z T
g

X

52. Zero circulation ILet C be the ellipse in which the plane
2x 4 3y — z = 0 meets the cylinder x*> + y? = 12. Show, with-
out evaluating either line integral directly, that the circulation of
the field F = xi + yj + zk around C in either direction is zero.

53, Flow along a curve The field F = xyi + yj — yzk is the
velocity field of a flow in space. Find the flow from (0, 0, 0) to

(1, 1, 1) along the curve of intersection of the cylinder y = x? and
the plane z = x. (Hint: Use ¢t = x as the parameter.)

Z

LLD

/ . i
i -
_._‘._,._,;;.:_L.)y

54, Flowofagradientfield Find the flow of thefield F = V(xy%:):

a. Once around the curve C in Exercise 52, clockwise as viewed
from above

b. Along the line segment from (1, 1, 1) to (2, 1,—1).

COMPUTER EXPLORATIONS
In Exercises 55-60, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a. Find dr for the path r(?) = g()i + h@)j + k(Dk.
b. Evaluate the force F along the path.

c. Evaluate / F-dr.
c

55. F = %1 4 3x(x® + 2)f; r(®) = (2cos Hi + (sin j,
0=:t=27
56. F= —>—i+—2§ r(f) = (cos Hi + (sin &)
1+ %2 1+ y?7 ’
O=r=nmw

57. F = (y + yzcos xypi + (3% + xzcos xyz)j +
(z + xycosxygk; r(®) = Qcos Hi + (Bsind)j + k,
0=t=2y7 )
58. ¥ = 2xpi — y4j + ze’k; x(®) = —ri + Vij + 31k,
1=r=4 '
59. F = 2y + sinx)i + (22 + (1/3)cos y)j + x*k;
r(®) = (sin )i + (cos pj + (sin 20k, —w/2 =t =7/2
60. F = (x%)i + %x?*j + ks @) = (cos Hi + (sinA)j +

@sin’t— Dk, 0=<¢=27

]. : 3 Path Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in
space due to the presence of a massive object. The gravitational force on a body of mass m
placed in the field is given by F = mG. Similarly, an electric field E is a vector field in
space that represents the effect of electric forces on a charged particle placed within it. The
force on a body of charge g placed in the field is given by F = gE. In gravitational and
electric fields, the amount of work it takes to move a mass or charge from one point to

another depends on the initial and final positions of the object—not on which path is taken

between these positions. In this section we study vector fields with this property and the
calculation of work integrals associated with them.




